
???

2020

Carmen Gagnon

January 2020

How to …

1

Content

TECHNOLOGY ... 4

CODE IGNITER ... 4
MODEL – VIEW – CONTROLLER .. 4

DATABASE .. 5

DATABASE DIAGRAM.. 5
RELATIONS BETWEEN TABLES ... 5

JOIN (or INNER JOIN) .. 6
LEFT JOIN .. 6
RIGHT JOIN ... 6

COMPARISON OPERATOR .. 7
DATABASE AND CODEIGNITER .. 7

Database configuration .. 7
Connecting the database ... 7
Query .. 8
Inserting data ... 8
Updating data .. 8
Deleting data .. 9

STRUCTURE OF THE SYSTEM ... 10

DASHBOARD AND MENU ... 10
NEWS ... 10
BEEKEEPER ... 11

Apiaries... 12
Inquiries .. 12
Documents ... 13

APIARIES .. 13
Colonies .. 14
Documents ... 14
Map .. 14

COLONIES .. 15
Production .. 15

REPORTS .. 16
SETTINGS ... 17
DOCUMENTATION ... 17

WORKING WITH MVC ... 18

LIST OF NATIONALITY ... 18
ADD NATIONALITY ... 21
UPDATE NATIONALITY ... 23
DELETE NATIONALITY .. 24

HOW TO ADD A NEW FIELD .. 25

CREATE IN THE TABLE ... 25
CHANGE THE CONTROLLER – MODEL AND VIEWS .. 25

Modification of controller Association.php. ... 25
Modification of the model .. 26
Modification of the view in Association ... 26

VERIFY THE LANGUAGE TRANSLATION .. 27
MODIFY THE REPORT .. 28
MODIFY THE USER GUIDE .. 28
TESTING... 28

SECURITY IN THE SYSTEM ... 28

2

PROFILE ... 28
USER ... 29

SESSION VARIABLES ... 30

FLASHDATA .. 30
USERDATA ... 30

TRANSLATION .. 31

LANGUAGE AND USER ... 31
LANGUAGE CLASS .. 31
SEQUENCE FOR TRANSLATION .. 31

JQUERY MODAL AND JAVASCRIPT .. 33

ORDER THE TABLE WITH JAVASCRIPT .. 33
PASSING PARAMETER ... 33

UPLOAD OF DOCUMENTS ... 34

CREATION OF THE DIRECTORY OF BEEKEEPER ... 34
TABLES DOCUMENT AND DOCUMENT TYPE .. 34
UPLOAD OF DOCUMENTS .. 35
VIEW OF DOCUMENTS .. 36
DELETE A DOCUMENT ... 36
DOWNLOAD AND ZIP FILE .. 37

1. Store files .. 37
2. Configuration.. 37
3. Controller .. 37

Add files – .. 37
Add directory files and sub-directory – ... 37
Completed Code.. 38

4. View .. 39
Completed Code.. 39

VALIDATION ... 40

LIBRARY FORM VALIDATION... 40
CREATING OUR OWN VALIDATION WITH CALLBACK METHOD ... 40
CHECK INTEGRITY .. 41
FORM VALIDATION PARAMETER .. 42

REPORTS... 43

TCPDF AND CODEIGNITER .. 43
ADD A NEW CRITERIA IN A REPORT .. 43

Add a field in a report ... 44
CREATION OF NEW REPORT IN THE SYSTEM ... 45

Step 1 - Report template needed.. 45
Step 2 – Create the new report in the report list .. 45
Step 3 – Integrate this new report in the controller Report.php and view /report/index.php ... 45
Step 4 – Create the SQL query for report 03 in /models/model_report.php .. 46
Step 5 – Create the report in /application/controllers/Report03.php .. 47

PRINT A TOTAL FOR THE REPORT ... 48
MAIN COMMAND TCPDF ... 49

TOOLS FOR FINDING ERRORS ... 51

PRINT_R IN PHP ... 51
ALERT() IN JAVASCRIPT ... 51
DEVELOPER TOOLS IN BROWSER.. 51

PHP BASICS ... 52

3

HTML BASICS .. 53

FONT-AWESOME (FA) ... 56

BOOTSTRAP BASICS .. 58

GRID SYSTEM.. 58
ALERT ... 58
BUTTON .. 59
GLYPHICON .. 59
COLOR .. 61

GOOGLE MAP ... 62

EMBED A MAP... 62
GOOGLE MAP API WITH KEY ... 63
WORK IN CODEIGNITER .. 63

SOME TRICKS .. 65

REMOVE TRAILING SPACES IN THE CODE ... 65
MIGRATION PROCESS ... 65
TAB CONTROL ... 66
MUTIPLE CHOICE FOR A DROP-DOWN LIST (JSON) ... 68
FUNCTION FOR CLEARING THE FORM WITH AJAX ... 69
BOOTSTRAP TOOLTIP .. 70
INSTALLATION OF A LOG ... 70

4

Technology

Code Igniter
CodeIgniter is an Application Development Framework - a toolkit - for people who build web sites using PHP. Its goal

is to enable you to develop projects much faster than you could if you were writing code from scratch, by providing a

rich set of libraries for commonly needed tasks, as well as a simple interface and logical structure to access these

libraries. Your system is using the framework Code Igniter.

Model – View – Controller
CodeIgniter is based on the Model-View-Controller development pattern. MVC is a software approach that separates

application logic from presentation. In practice, it permits your web pages to contain minimal scripting since the

presentation is separate from the PHP scripting. Your system is based on these principles.

 The Model represents your data structures. Typically your model classes will contain functions that help you retrieve,

insert, and update information in your database.

 The View is the information that is being presented to a user. A View will normally be a web page, but in CodeIgniter, a

view can also be a page fragment like a header or footer.

 The Controller serves as an intermediary between the Model, the View, and any other resources needed to process the

HTTP request and generate a web page.

 To get the version of the codeigniter used in your system look for define in system/core/CodeIgniter.php

(define(‘CI_VERSION’, '3.x.xxx’);

Model View Controller

5

Database
MySQL is the world's most popular open source database. With its proven performance, reliability and ease-of-use,

MySQL has become the leading database choice. Oracle drives MySQL innovation, delivering new capabilities to power

next generation web, cloud, mobile and embedded applications. MySQL is a relational database, in that it allows tables

to be joined together and also supports the concept of foreign keys.

The database has several relationships between the tables, which is illustrated by the following diagram. It’s possible

to relate the tables directly in MySQL but the technology choice for the database is to JOIN the tables when it’s needed

in the model. The performance is better and the management of the database will be easier.

Database Diagram
MySQL Workbench is used to create the diagram of the database. The relations are made manually after a

synchronization with the database.

Relations between tables
The type of JOIN will determine which data will be selected. There is many different ways you can return data from

two relational tables. I am excluding cross Joins and self referencing Joins. For the database most of the time, only

3 JOIN methods have been used (JOIN – LEFT JOIN – RIGHT JOIN).

1. INNER JOIN OR JOIN

2. LEFT JOIN

3. RIGHT JOIN

4. OUTER JOIN

5. LEFT JOIN EXCLUDING INNER JOIN

6. RIGHT JOIN EXCLUDING INNER JOIN

7. OUTER JOIN EXCLUDING INNER JOIN

6

JOIN (or INNER JOIN)

This is the simplest, most understood Join and is the most common. This query will

return all of the records in the left table (table A) that have a matching record in the

right table (table B). This Join is written as follows:

SELECT <select_list>

FROM Table_A A

JOIN Table_B B

ON A.Key = B.Key

LEFT JOIN

This query will return all of the records in the left table (table A) regardless if any of

those records have a match in the right table (table B). It will also return any matching

records from the right table. This Join is written as follows:

SELECT <select_list>

FROM Table_A A

LEFT JOIN Table_B B

ON A.Key = B.Key

RIGHT JOIN

This query will return all of the records in the right table (table B) regardless if any of

those records have a match in the left table (table A). It will also return any matching

records from the left table. This Join is written as follows:

SELECT <select_list>

FROM Table_A A

RIGHT JOIN Table_B B

ON A.Key = B.Key

In the model_beekeeper, you find an example of JOIN. In this case there should be a match between beekeeper and

and document, unless the line will not be qualified. But for apiary table, there should be a match or not. If there is no

apiary in relation, the line will still be qualified.

7

Comparison operator

Database and CodeIgniter
CodeIgniter comes with a full-featured and very fast abstracted database class that supports both traditional

structures and Query Builder patterns. The database functions offer clear, simple syntax.

Database configuration
The database configuration is in application/config/database.php. You need to indicate where is the server of the

database, the username, password and name of the database.

Connecting the database
In the system, the database is automatically connected when we start the system, in

application/config/autoload.php

8

Query
$this->db->query()

To submit a query, we use the query function. ($this_db->query).

In this example, a parameter is passed to the query to get one row

or all the rows. In the case we expect one row, we will use

row_array() for the return. For many rows, it will be result_array()

Inserting data
$this->db->insert()

Generates an insert string based on the data you supply, and runs the query. You can either pass an array or

an object to the function.

In application/controllers/Nationality.php an array is created to pass $data.

Updating data
$this->db->update()

Generates an update string and runs the query based on the data you supply. You can pass an array or an object to

the function. Here is an example using an array:

In this case we pass the $data, which is an array created in application/controllers/Nationality.php and also the $id

of the row of table Nationality we want to update.

9

Deleting data
$this->db->delete()

Generates a delete SQL string and runs the query.

In the controller, we check the integrity of the database before deleting a row.

10

Structure of the system

Dashboard and menu

News
MVC of News :

 Application/controllers/Post.php

 Application/models/Model_post.php

 Application/views/post/create.php – edit.php – index.php – view.php

Application/views/templates/header.php

Application/views/templates/header_menu.php

Application/views/templates/side_menubar.php

Application/views/templates/footer.php

Application/views/dashboard.php

Application/controllers/Dashboard.php

view.php

index.php

11

The management of Post and Category are in the Settings of the system.

Beekeeper
MVC of Beekeeper :

 Application/controllers/Beekeeper.php

 Application/models/Model_beekeeper.php

 Application/views/beekeeper/create.php – edit.php – index.php

All the tabs of Edit a beekeeper are treated in application/views/beekeeper/edit.php but might use model_apiary

and model_colony and all the models for the creation of the drop-down list (model_nationality, model_fund_source,

model_category, model_education, model_gender and model_region etc…).

create.php

index.php

Edit.php

index.php

Application/controllers/Report21.php

create.php

 index.php

Edit.php

index.php

12

Apiaries

Inquiries

List, add, update and delete of Inquiries are in

application/views/beekeeper/edit.php but the treatment are in the

controller Inquiry.php and model_inquiry

/application/views/apiary/edit.php

Application/controllers/Report22.php

/application/views/beekeeper/edit.php /application/views/apiary/create.php

13

Documents
Documents are in application/views/beekeeper/edit.php. All the management of documents (upload, view and

delete) are done in Document tab.

Apiaries
MVC of Apiary:

 Application/controllers/Apiary.php

 Application/models/Model_apiary.php

 Application/views/apiary/create.php – edit.php – index.php

Other models are called for the creation of the drop-down list (model_source, model_beekeeper, model_topography,

model_region, model_province, model_district).

create.php

Application/controllers/Report22.php

index.php

edit.php

index.php

Application/views/beekeeper/edit.ph

p

14

Colonies
Some parts are treated in the MVC colony, but also in the MVC apiary

Documents
Documents are in application/views/apiary/edit.php. All the management of documents (upload, view and delete)

are done in Document tab.

Map
The map is only a view of the link indicated in the field map in the edit part of the apiary.

Application/view/colony/create.php

Application/controllers/Report23.php

Application/view/apiary/index.ph

p

Application/view/colony/edit.php

Application/view/apiary/index.php

15

Colonies
MVC of Colony:

 Application/controllers/Colony.php

 Application/models/Model_colony.php

 Application/views/colony/create.php – edit.php – index.php

Production
Other models are called for the creation of the drop-down list (model_product, model_colony)

List, add, update and delete of Production are in

application/views/colony/edit.php but the treatment are in the

controller Production.php and model_production

create.php

Application/controllers/Report23.php

index.php

edit.php

index.php

Application/views/apiary/edit.php

16

Reports
MVC of Report:

 Application/controllers/Report.php

 Application/models/Model_report.php

 Application/views/report/index.php

 Each reports are in application/controllers/report01.php report02.php etc…

 Models used for the creation of all the dropdown list: model_province, model_district, model_beekeeper,

model_municipality, model_species , model_phase, model_nationality etc…

Choose the report will open or not the parameters for each report. This is done in javascript found in

application/views/report/index.php

Generate the report submits the form

/application/views/report/index.php to compose and print the

appropriate report found in /appplication/controllers/reportxx.php. It

opens the pdf viewer of the browser.

17

Settings
MVC of Settings:

 Application/controllers/Setting.php

 Application/views/setting/index.php

 There is not model for settings because it’s only commands to call the MVC of each settings.

 Each command have the same treatment. You will find a more detailed examples in the section Example

MVC.

Documentation
Documentation is calling the user guide with the pdf Viewer. The user guide are in:

/assets/documentation/meb_user_guide_fr.pdf or meb_user_guide_en.pdf depending on the language of the user.

You will find other documentation related to the system in this directory but not available for users. Only for the

super administrator of the system.

Application/views/region/index.php

18

Working with MVC
This example will introduce you to the CodeIgniter framework and the basic principles of MVC architecture. It will

show you how a basic CodeIgniter module is constructed in step-by-step fashion. We will take a very simple example:

The management of the table Nationality. (View – Add – Update and Delete)

Here is the structure of the table:

List of Nationality
The view is the form that will be seen by the user. In the case of the management of nationality, all the process is

inside /application/views/nationality/index.php. The list, creation, update and delete will use the facilities of

datatables.net, javascript and ajax.

All the process will work using the MVC codeigniter principle. The controller /application/controllers/Nationality.php

in charge of the control and the model /application/models/model_nationality.php where all the queries to the

database will be done. Finally, the view under /application/views/nationality/index.php.

To understand the whole process, open the controller Nationality.php, the model_nationality and the view

nationality/index.php in your editor.

1. First we evaluate if the last submit of the form had generate an error

message or a confirmation of the success of the operation. The

message will be presented to the user.

19

2. Security: We verify if the user can create a new nationality. If yes, the button will be presented. The rest of

the access (edit and delete) will be managed inside the controller where the line for each nationality will be

composed with the data from the database.

3. The list is managed by javascript and Ajax. You will find the javascript part at the end of the form.

manageTable is created here invoking the controller

in /application/controllers/nationality.php where the

function fetchNationalityData will organise the list

and call the model Model_nationality to reach the

database.

This is where you can also modify the default order of

the table.

4. Controller Nationality.php: This is where the function getNationalityData is called. You can see how the

security is build giving permission or not to update or delete the entry in the table. You will find the function

getNationalityData in /application/models/Model_nationality.php. The datas are treated by the controller

and the result is back to the view index.php in json format.

1

2

3

20

5. Model_nationality.php: Here is the query to the

database. If the ID is sent to the function, only the entry

will be returned. But in the case of the list, all the entries

in the table Nationality will be returned.

4

5

21

Add nationality

6. For adding a nationality, we will use the createForm of Ajax/Javascript and submit the form calling the

function create in the controller nationality.php. Here is the view for adding a nationality.

CreateForm javascript.

6

22

7. Function create of controller Nationality.php: This is where the validation will be done, in this case the

name is required. If it’s not filled, the validation will be false and an error message will be returned to the

javascript form. If it’s valid, the controller will call the function create in the model_nationality

7

23

Update nationality
8. The process will be pratically the same for the edit (update) of the nationality. Javascript editModal will

manage the update.

9. The submit at the end will call the function update of the controller Nationality.php

10. The form should be filled with the information from the database and the function

fetchNationalityDataById will be called from the controller nationality.php, javascript modal passing the id

from the list to the function getNationalityData in the model_nationality

/application/controllers/

nationality.php

/application/models/

model_nationality.php

9

/application/views/national

ity/ Index.php – editFunc

9

D

a

t

a

b

a

s

e

a

n

d

C

o

d

e

Ig

n

it

e

r

8

10

Da

ta

ba

se

an

d

Co

de

Ig

nit

er

24

Delete nationality
11. Same process, delete is in the view index.php, calling the javascript removeModal

12. On submit, in this case authorization for the delete, the function remove from the controller

Nationality.php will be called.

13. The remove function of the controller nationality.php will verify the

integrity of the database. The nationality can be already used in the table

apiary and if an entry exists, the delete will not be possible. The function is

checkIntegrity in the model_nationality

14. If the information is not in apiary table, then the delete can be done,

calling the function remove in the model_nationality.

11

12

/application/views/national

ity/ Index.php –

removeFunc

13

14

25

How to add a new field
This is the method for adding a new field in the database and in the system. The example here is to add the field

remark to the table association.

Create in the table
Add the field remark to the table association with phpMyAdmin. You add the field in alphabetical order when

possible.

Change the controller – model and views
The treatment of association (add, edit, delete) is called in the view Index of Association. Open controller

Association.php, model_association and views/association/index.php

Modification of controller Association.php.
We must add the field remark in the list of association that appear in Association form. In the function

fetchAssociationData

Add the new field in the functions Create and Update.

26

Modification of the model
Verify if the new field might be involved in the treatment of model_association.php. The query is SELECT * so

automatically the remark will be available in the recordset

NO MODIFICATION TO DO

Modification of the view in Association
Find the jquery modal for performance in the views/association/index.php

In the list, we must add the remark

27

In the create, a textarea field for remark must be added after the name of the association

No change in the query javascript part of the create of association

In the edit part:

In the query javascript part, the field remark must be filled from the database:

Verify the language translation
Verify if the title Remark is in the translation part of the system. Application/language/english/english_lang.php and

application/language/french/french_lang.php

28

Modify the report
If a report for the association exists, verify if the field Remark should be included. NO REPORT

Modify the user guide
User guide: modify the capture of the screen on association in the user guide. Save the user guide in pdf format

assets/documentation/user_guide_en.doc and user_guide_fr.doc. In this case, there is no screen in the user guide

specifically for the association.

Testing
You should see the remark on the list of Association in Settings part.

And test the Add Association and Edit Association. Verify as well if the delete is still working good.

Security in the system
The security of the system is part of the profile. The Super-administrator can decide what will be the access of the

profile, giving after to each user the appropriate profile.

Profile

The profile admin have all the access. Only the administrator of the system should have all these access. Once the

profile is created, it’s in the table profile.

29

You can see in the entry of admin profile, all the access. Each

module of the system will verify the profile given to the user

and find the appropriate access.

It’s in application/core/My_controller.php that the

permission will be copied in the class permission

model_profile.php

In all the module, before the treatment, there will always be a

verification of the permission:

In this example, if the array deleteNationality is not found in $this->permission the delete will not be available and

the user will be redirected to dashboard.

This is an example of the composition of

the list of nationality. The

icones edit and delete will not

be visible if it’s not in the array

profile of the user.

User
It’s the profile given to the user that will give the permission.

30

Session variables
Session variables are special variables that exist only while the user's session with your application is active. Session

variables are specific to each visitor to your site. They are used to store user-specific information that needs to be

accessed by multiple pages in a web application. Like for example, the language used by the user or even the user

code. Codeigniter have a library for the session variable. There is 2 possibilities.

Flashdata
The variable is temporary and will last only for one process. In this case, no need to unset the variable. The error

message use this method.

 $msg_error = $this->lang->line('Error occurred');

 $this->session->set_flashdata('errors', $msg_error);

Userdata
The variable is available all the time, unless you unset the session variable

First, you have to create the session variables. In this example, I want to keep the beekeeper id for future treatment.

 Clear the content of the session variable beekeeper_id in case it already exists

 If it’s empty, then we can fill

 We fill by the creation of an array with the name of the session variable (beekeeper_id) and the content, in

this case $beekeeper_data[‘id’]

 The session variable beekeeper_id is then filled with the name and content.

<!-- Creation of a session field to keep the beekeeper -->

 <?php $this->session->unset_userdata('beekeeper_id');?>

 <?php if(empty($this->session->userdata('beekeeper_id'))) {

 $beekeeper_id = array('beekeeper_id' => $beekeeper_data['id']);

 $this->session->set_userdata($beekeeper_id);} ?>

To access the session variable:

$beekeeper_id = $this->session->beekeeper_id;

31

Translation

Language and user
With the creation of users, you will indicate the language to be used in the

system. The system can be available in different language. In this example, it’s

English and French.

Language class
The language class is used for the translation of each titles in the system and for the messages from CodeIgniter.

In your CodeIgniter system folder, you will find a language sub-directory containing a set of language files for

the English idiom. The files in this directory (system/language/english/) define the regular messages, error messages,

and other generally output terms or expressions, for the different parts of the CodeIgniter framework.

You can create or incorporate your own language files, as needed, in order to provide application-specific error and

other messages, or to provide translations of the core messages into other languages. These translations or additional

messages would go inside your application/language/ directory, with separate sub-directories for each idiom (for

instance ‘french).

When CodeIgniter loads language files, it will load the one in system/language/ first and will then look for an override

in your application/language/ directory.

In the English part of the language, you will find all the titles and messages that are used in the forms. You need to

have the customize title in both languages: English and French. The language class will call the line and replace the

field with the appropriate translation depending on the user preference.

Sequence for translation
First, the user is identified and the language preference is kept in the session variable language. The form

/application/controller/Auth.php will create the session variable language.

32

After /application/core/My_controller.php will load the module containing the translation in Mongolian.

The dataTable used in the system for listing the information is not a CodeIgniter facility, so it’s not translated in the

language directory. It’s a jQuery facility and the translation have been copied in

/assets/bower_components/datatables.net/English.json or French.json depending on the language.

In Javascript, the parameter ‘Language’ will indicate which language will be used in the list tables.

33

Jquery modal and Javascript

Order the table with javascript
For getting a different default order in the table with Javascript, you can use the parameter order. The first

parameter will be the order of the field presented. In this case 0 is the name of the beekeeper, asc for ascending.

 manageTableDocument = $('#manageTableDocument').DataTable({

 'ajax': base_url+'beekeeper/fetchBeekeeperDocument/'+<?php echo $beekeeper_data['id']; ?>,

 'order': [[0, "asc"]]

The user will still be able to organize the order of the list differently by pressing the titles of the field.

Passing parameter
We can pass many parameters to the modal. You just need to divide with a ,

See the example in Stock system. Index of item where I needed to indicate if the activity for the inventory would be

+ or – (in or out)

First in the controller where we generate the line for each item (item_id and type of activity):

if(in_array('updateItem', $this->permission)) {

 $buttons .= '<button type="button" class="btn btn-default" onclick="activity('.$value['id'].',2)" data-

toggle="modal" data-target="#activityModal"><i class="fa fa-minus" title="O U T of Inventory"></i></button>'; }

And in the index – modal, we just read the parametr in the function:

// Activity inventory

function activity(item_id,type_activity)

{

34

Upload of documents
You have the possibility to upload documents in Beekeeper, Apiary and Colony. You will find the method in the

controller Beekeeper.php, the model model_beekeeper.php and in the edit.php of each beekeeper/apiary/colony.

For the identification of documents, a document type table is in relation with the document table. Each document

will have an entry in the table document but will also be uploaded in the appropriate directory created using the

beekeeper id. upload/documents/name_of_directory

We use codeigniter class Directory and the library upload.

Creation of the directory of beekeeper
The directory is created when we add the beekeeper. We will take the beekeeper.id to identify the directory in the

table beekeeper. All the documents uploaded from the beekeeper, apiary or colony forms will be in this repertory.

'directory' => $this->input->post('beekeeper.id'),

After the insert in the table, we proceed to the creation of the directory in upload/documents/

Tables document and document type
2 tables are used for the management of documents. At the same moment we upload the document in the directory,

an entry is created in table document. You can see that the name of the document will be renamed if there is some

spaces in the name. Spaces are hard to manage when we work with upload and directory. The beekeeper_id will

bring to the directory.

35

Upload of documents
The functions in Beekeeper, Apiary and Colony are:

 fetchBeekeeperDocument generate the list of documents.

 UploadDocument for uploading the documents

 removeDocument for delete of documents

The directory will be indicated in a session variable in edit.php

Upload will first config the path, the types and maximum size for the uploading of documents. This is part of the

library upload. Once all the information is completed in the configuration of the library upload, we proceed to the

creation of the entry in the table document.

When the document is successfully created in the table document, we can upload the document in the directory.

36

View of documents
The view of documents is generated in the function fetchBeekeeperDocument who call the model_beekeeper to

execute the function getBeekeeperDocument.

Delete a document
When we delete a document we must take care of deleting the entry in the table document.

37

Download and Zip file

1. Store files
Created a uploads directory at project root.

Store files in uploads directory and created another sub-directory documents for storing files.

I am using uploads directory in zip file creation.

Create archivefiles directory at project root to save the created zip files.

2. Configuration
Default controller Open application/config/routes.php and edit default_controller value to Zip.

$route['default_controller'] = 'Zip';

3. Controller
Create a Zip.php file in application/controllers/ directory.

Create 3 methods –

 __construct – Load url helper and zip library.

 index – Load index_view view.

 createzip – This method is called on <form > submit.

Add files –

On the first button click, I am adding specified files for the compress.

For this, I have assign file path in $filepath1 and $filepath2.

To add file use $this->zip->read_file();. This method takes file-path as a parameter.

$this->zip->read_file([file-path]);

Pass the $filepath1 and $filepath2 in the method.

For downloading file on the user system call $this->zip->download() method. This method takes file-name as a

parameter.

$this->zip->download([file-name]);

Add directory files and sub-directory –

On the second button click, I am adding whole directory files and sub-directory for compress.

Specify a directory path in the $path.

Use $this->zip->read_dir() to add directory files.

$this->zip->read_dir([directory-path]);

To save a zip file on a server call $this->zip->archive() method and pass the path with file-name where you want to

store.

https://makitweb.com/create-and-download-zip-file-in-codeigniter/upload_directory/

38

$this->zip->archive([file-path]);

Execute $this->zip->download() method for downloading the file to the user system.

Completed Code

<?php

defined('BASEPATH') OR exit('No direct script access allowed');

class Zip extends CI_Controller {

 public function __construct(){

 parent::__construct();

 $this->load->helper('url');

 // Load zip library

 $this->load->library('zip');

 }

 public function index(){

 // Load view

 $this->load->view('index_view');

 }

 // Create zip

 public function createzip(){

 // Read file from path

 if($this->input->post('but_createzip1') != NULL){

 // File path

 $filepath1 = FCPATH.'/uploads/image1.jpg';

 $filepath2 = FCPATH.'/uploads/document/users.csv';

 // Add file

 $this->zip->read_file($filepath1);

 $this->zip->read_file($filepath2);

 // Download

 $filename = "backup.zip";

 $this->zip->download($filename);

 }

 // Read files from directory

 if($this->input->post('but_createzip2') != NULL){

 // File name

 $filename = "backup.zip";

 // Directory path (uploads directory stored in project root)

 $path = 'uploads';

39

 // Add directory to zip

 $this->zip->read_dir($path);

 // Save the zip file to archivefiles directory

 $this->zip->archive(FCPATH.'/archivefiles/'.$filename);

 // Download

 $this->zip->download($filename);

 }

 // Load view

 $this->load->view('index_view');

 }

}

4. View
Create a index_view.php file application/views/ directory.

Create a <form > and set action='<?= base_url() ?>index.php/zip/createzip‘.

Create two submit buttons.

1. One for creating a zip file from the specified path.

2. and another for creating zip file from a directory.

Completed Code

<?php

defined('BASEPATH') OR exit('No direct script access allowed');

?>

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>Create and Download Zip file in CodeIgniter</title>

 </head>

 <body>

 <form method='post' action='<?= base_url() ?>index.php/posts/createzip/'>

 <input type="submit" name="but_createzip1" value='Add file from path and download zip'>

 <input type="submit" name="but_createzip2" value='Add directory files and sub-directory, save archive and

download zip'>

 </form>

 </body>

</html>

40

Validation
Validation is done using the codeigniter library Form Validation

Let’s take the example of Beekeeper. The form views/beekeeper/edit.php is where the user

complete the information about the Beekeeper. The required field are indicated with a red

asterisk in the system. It means that a validation will be done to make sure that the field is filled.

Library Form Validation
It’s in the controller beekeeper.php that the validation will be handle in the create and update functions.

If the validation is completed, the update or create will be done. If not, the error message generated by the

form_validation class will be sent to the view who will show the error message after the form have been submitted to

the server.

Creating our own validation with callback method
The validation system supports callbacks to your own validation methods. This allows you to extend the validation

class to meet your needs. For example, if you need to run a specific function or a database query to validate some

information, you can create a callback method that does that. Let’s create an example of this for the validation of

dates. We need to verify the range of dates (date from and date to) and the rules of the validation greater_than

works only for numbers, not for date.

I used the rules of form_validation to indicate that it’s required but for the date_end, I created a function to check

the date.

$this->form_validation->set_rules('date_issued', $this->lang->line('Date issued'), 'trim|required');

$this->form_validation->set_rules('date_end', $this->lang->line('Date end'), 'trim|required|callback_date_check');

41

The message should be translated in both language.

Check Integrity
More specific validation will be done for example, when deleting settings table that might be used in the system. In

all the remove function of these tables, you will find this validation. In this example, the District can’t be delete if the

function checkIntegrity indicate that some rows are using the entry.

In this case, District can be found in more than one tables.

42

Form validation parameter
Here you have the information about the rules of the library form_validation

43

Reports

TCPDF and CodeIgniter
Report are constructed using a combination of TCPDF and CodeIgniter. You can have information at www.tcpdf.org

The Report form handle the criteria’s:

 Controller: Report.php main form and Report01.php Report02.php …. For each report

 Model: Model_report.php

 View: report/index.php

Each report have his own form in the Controller of CodeIgniter for a more simple maintenance. They are called

directly in report/index.php using the html OBJECT data. This will allow the report to open inside CodeIgniter

framework.

The Controller Report.php will control the Report View and create the drop-down list. If a report have been asked, it

create some temporary variable session for the parameters. These variables will be invoked in the Controller of each

program.

Example: Report01.php

It’s in the controller Report01.php that the report will be composed with TCPDF and the Table class of CodeIgniter.

Depending on the complexity of the report, it might be composed only with TCPDF. A call to the model report will

be done to get the data and fill the information in the column of the report.

Add a new criteria in a report
Example of adding category as a new criteria. To add a field in a report you must:

1. Enable the criteria in JQuery of report/index.php.

2. Create a temporary session variable for the criteria chosen in the controller Report.php

http://www.tcpdf.org/

44

3. Add the criteria in model_report.php

Add a field in a report
1. To add a new field in a report, make sure that this field is available in the SELECT of the model_report.php

2. Add the field in the heading and treatment of the record set of the report and adjust the format of each column

considering this new field.

45

Creation of new report in the system
The exercice is to create a report for Production on a step by step basic.

Step 1 - Report template needed
We need a list of all the production for an interval of dates. The report should be available with the criteria:

 Date From / Date To

 All Municipalities or one particular municipality

The information to print will be:

 Register ID

 Name of the beekeeper

 Product

 Total colony

 Total Production

 Production Date

Step 2 – Create the new report in the report list
This is the drop-down list of the report in the Report form.

Goto phpMyAdmin – Database name – table report

Step 3 – Integrate this new report in the controller Report.php and view /report/index.php
The new report should be integrated in the process of the controller/Report.php

This is where we send as a session variable (temporary flashdata) the information to the view/report/index.php

46

By default, all the criteria of the report form are disabled. It’s when the user choose the report that we will enable

the appropriate criteria. You must enable the parameters Municipality and Date-from Date-to for Report 03 in the

javascript part of /views/report/index.php

And call the report after the criteria have been filled by the user.

Step 4 – Create the SQL query for report 03 in /models/model_report.php

47

Step 5 – Create the report in /application/controllers/Report03.php
We will copy from a report that already exists like Report01.php The register ID and Beekeeper name is already

there.

 Change everywhere Report01 for Report03

 Change everywhere REP01 for REP03

 Modify the size of the character because we have lots of information and we need small characters….

o $pdf->SetFont('dejavusans', '', 8);

 Modify the title of the report: It will be Production taken from translation file. Make sure that the title is in

the dictionnary of the language unless the title won’t appear. We add the year chosen by the user in the

title.

o $title_report = $this->lang->line('Production');

 Verify if Production exists in the translation english and mongolian

o /application/language/english/english_lang.php

o /application/language/english/mongolian_lang.php

 Change the heading for the appropriate title.

 The result will be for the header:

We want to align the header right when it’s an amount. The percentage given of the total space taken on the report

for each column must be evaluated while testing the printing.

The call to the database will bring the record set and the percentage for each column must be the same

48

Then we call the OUTPUT to receive the PDF report in the report section of the system.

Print a total for the report

In controller/report03.php

I created a variable to add the total of each column.

You must assign 0 to the variable before beginning to

cumulate the amount in each variable.

After the variable is created, you can begin to add the content of each row. After all the lines have been created,

you must print the total.

49

Main command TCPDF

50

51

Tools for finding errors

Print_r in PHP
Print_r ($variable);

Die();

It will show the content of the variable but in CodeIgniter, you might need to kill the process after with Die() command.

Normally it will be seen before the view but it’s not visible all the time. CodeIgniter is using lots of different layers of

information and sometimes this process will be overpassed.

Alert() in Javascript
When trying to debug Javascript errors, you might use Alert box to see what’s happening. If there is a syntax error in

the javascript statement, it’s not easy to find because all the script will not work.

The alert box might be used inside the javascript script to see where the problem is…

To see a parameter, it’s a + and the parameter:

alert ('type activity'+type_activity);

Developer tools in browser
Chrome
Open the browser.
From the menu, select "More
tools".
From tools, choose "Developer
tools".
Finally, select Console.

Firefox
Open the browser.
From the menu, select "Web
Developer".
Finally, select "Web Console".

Edge
Open the browser.
From the menu, select "Developer
Tools".
Finally, select "Console".

Developer tools in the browser are useful to see

where the process is giving error. This is an

example of Firefox Web Developer tool.

Inspector, console, debugger are all the tools

that you might explore when you are debugging

your system.

Here, using the debugger, you can see what are

the sources used.

In the Network part, you will be able to find the function called …

52

PHP Basics

If .. elseif … else

Switch

Do … while

For and Foreach loop

53

HTML Basics
Name or ID
Name will identify the field in
POST or GET. ID must be unique
and is normally used in Javascript.

To have a bouton transparent
><input type="submit"
value="Rechercher"
style="color: transparent;
background-color: transparent;
border-color: transparent;
cursor: default;" />

Characters
Espace =
À = À
à = à
â = â

É = É
è = è

é = é
ê = ê

54

55

56

Font-Awesome (FA)

57

58

Bootstrap basics

Grid System

Alert
Alerts are created with the .alert class, followed by one of the four contextual classes .alert-success, .alert-

info, .alert-warning or .alert-danger:

59

Button

Glyphicon

60

61

Color

62

Google Map

Embed a map
To get a free access to a google map you can embed a map in your site. The method is very simple. Go to Google map

and find the site you wish to show in a map.

Press share and choose embed a map.

Copy the html part in the map field of the apiary and save.

In Apiary part, the tab MAP will present the google map of the site.

63

Google Map API with key
To use google map to show a site, you need to use an API for google map.

If you don’t have an API key, you will get the error message: this page didn’t load google maps correctly. It means

you are not using an API key and will need to sign up for one then configure your site to use it. Websites that started

using Google Maps on or after June 22, 2016 require an API key in order for maps to show.

Follow these steps to create and implement a Google Maps API Key. Google gives you a very large amount of free

credits every month which makes their maps service virtually free. To date, none of our customers have ever

reported needing to pay anything. Even so, you can set limits and alerts.

1. Go to the Google Maps Platform welcome page then click Get Started.

2. Choose Maps, Routes and Places (all three) then click Continue.

3. Log into your Google Account or create a new one, if necessary.

You may need to repeat the previous steps after logging in.

4. Choose “Create a new project”, enter a name, then click Next.

5. Set up billing for your new project then proceed to enable your APIs.

Google gives you such a large amount of free credits every month that to date none of our customers have

reported needing to pay.

6. Click the API Console link to restrict your key’s use to your website only (important).

7. Under Application restrictions, choose “HTTP referrers (web sites)” then add the two entries below

(replacing yourname.com with your own domain). Type the first entry then hit enter on your keyboard to add

it. Repeat to add the second entry. Having both entries (with asterisks) will help ensure your maps work on any

URL of your website. yourname.com/* *.yourname.com/*

8. Click Save then copy your key that is now shown on the screen.

Work in Codeigniter
For the call in codeigniter, you need first to copy the googlemap api v3. This seems to be a project that have been

abandonned by the community but I was able to correct some errors. To get the map you should insert the API key

inside the form.

Application/library/Googlemaps.php and Jsmin.php must be copied first. I had to correct the definition of the Class

that needs to be extended now. This version must be for an old Codeigniter version. I also add the API key I created

on my google account. The var center should be the province office. It will be the center location for this API.

The site biostall.com have all the information about this method.

https://cloud.google.com/maps-platform/pricing/
https://cloud.google.com/maps-platform/pricing/
https://developers.google.com/maps/faq#usage_cap
https://cloud.google.com/maps-platform/
https://cloud.google.com/maps-platform/pricing/

64

The controller Gmaps.php and view map_view.php are a basic for more work … You can see the result with

Localhost:81/xxxxxx/index.php/gmaps

65

Some tricks

Remove trailing spaces in the code

For the trailing whitespaces, I installed an extension for removing whitespaces. You can check this

extension: https://marketplace.visualstudio.com/items?itemName=shardulm94.trailing-spaces

It automatically removes whitespaces on your code.

Migration process
We can use Migration facilities in codeigniter to upgrade the database and keep the versioning.

First in /application/config/migration.php

$config['migration_enabled'] = TRUE;

$config['migration_type'] = 'sequential';

$config['migration_version'] = 1;

Create a Migration class

This will serve to ensure that the migration is done properly.

Create the module that will update the database. In this example, we change the definition of a field from DATE to

DATETIME.

https://marketplace.visualstudio.com/items?itemName=shardulm94.trailing-spaces

66

For the migration, to apply the migration just go to the http://{base_url}/migrate. CodeIgniter applies the current

migration version on the migrations table on the database. To rollback, just set the version on the migrations table. In

our database, I used incremental migration versioning.

https://codeigniter.com/user_guide/libraries/migration.html

Tab control
So we have this GET parameters that can be seen on the url and can be used by PHP.

I returned this line in the ajax callback on submit function.

window.location.href = "<?php echo base_url('asset/update/'.$asset_data['asset']['id']) ?>" + "?tab=movement";

...

https://codeigniter.com/user_guide/libraries/migration.html

67

and I added a GET parameter tab with a value of movement.

So in CodeIgniter we have this Input Class that gets the value of these GET parameters:

In __construct() function of the Asset Controller, I added this line:

public function __construct()

{

parent::__construct();

$this->not_logged_in();

$this->data['page_title'] = 'Asset';

$this->data['active_tab'] = $this->input->get('tab') ?? 'asset';

}

?? is called a Null Coalescing Operator (It is a new feature in PHP7) that functions like isset method. The Null

coalescing operator returns its first operand if it exists and is not NULL; otherwise it returns its second operand.

https://www.tutorialspoint.com/php7/php7_coalescing_operator.htm

Next, I changed the tabs:

<section class="content">

 <ul class="nav nav-tabs">

 <li class="<?php echo (($active_tab === 'asset') ? 'active' : '')

?>"><a data-toggle="tab" href="#asset">Asset

 <li class="<?php echo (($active_tab === 'movement') ? 'active' : '')

?>"><a data-toggle="tab" href="#movement">Movement

 <li class="<?php echo (($active_tab === 'activity') ? 'active' : '')

?>"><a data-toggle="tab" href="#activity">Activity

 <li class="<?php echo (($active_tab === 'document') ? 'active' : '')

?>"><a data-toggle="tab" href="#document">Document

...

And the tab panes:

<div id="asset" class="tab-pane fade <?php echo (($active_tab === 'asset') ?

'in active' : '') ?>">

...

<div id="movement" class="tab-pane fade <?php echo (($active_tab ===

'movement') ? 'in active' : '') ?>"">

...

https://www.tutorialspoint.com/php7/php7_coalescing_operator.htm

68

<div id="activity" class="tab-pane fade <?php echo (($active_tab ===

'activity') ? 'in active' : '') ?>"">

...

<div id="document" class="tab-pane fade <?php echo (($active_tab ===

'document') ? 'in active' : '') ?>"">

...

So here I used Shorthand If-Else. https://dzone.com/articles/php-shorthand-if-else-examples

So now we can return to tabs where we came from. You can add + "?tab=activity" on the activity

part, etc.

Mutiple choice for a drop-down list (json)
Here is a method to avoid the creation of sub-form to keep

more than one choice for a drop-down list. In this example,

it is possible to have more than one origin for the

beekeeper. You can see the difference between the

foreign key for RATING, which have only one data, so the

key will have the same format of the field rating.id int(11).

For keeping more than one information in a field, we need

to create a chain. In the case of Origin, the foreing key will

be with format TEXT.

Every origin presented in the field origin.id will looks like

this:

["1","11"]

The method to create the chain and extract the information

will be the following:

For the view create, the name will have [] and a criteria multiple.

https://dzone.com/articles/php-shorthand-if-else-examples

69

For the update, same treatment except that we need to fill the data from the database. For this purpose, we will

need to json_decode the information:

In the controller, you need to encode the data before inserting or updating in the database.

'origin_id' => json_encode($this->input->post('origin')),

The select and where clause will be different:

Here we have a field where more than one District is possible:

$district_to_find = '"'.$district.'"';

$sql = "SELECT apiary FROM apiary WHERE apiary.district_id LIKE '%$district_to_find%'

In Object Oriented method:

// select with the wildcard %. It is possible to have more

// than one district in apiary table. In this case, the information

// will appear between bracket ex:["1"]. The search will be

// SELECT * FROM apiary WHERE district_id LIKE '%["1"]%'
$this->db->select('*');

$this->db->from('apiary');

$this->db->like('province_id', $id, 'both');

$query = $this->db->get();

$num_rows = $query->num_rows();

For printing the list of district in a single field, we need to decode and create a chain with all the names

foreach ($REP02 as $rs):

 $district_apiary = json_decode($rs->district_id);

 $district_to_print = '';

 // Get the content of each district for the apiary

 if (!$district_apiary == null) {

 foreach($district_apiary as $key=>$value){

 $district_data = $this->model_district->getDistrictData($district_apiary[$key]);

 $district_to_print = $district_to_print.' '.$district_data['name'];}

}

Function for clearing the form with ajax
Here is the method for clearing the form after an error have been detected.

In the create button, add the onclick function. This will make sure that the form is cleared in any situation; if there is

an error or not.

70

The function should be inserted in Javascript, (just before edit function)

The same lines should be inserted in the edit function

Bootstrap Tooltip
Tooltips are not CSS-only plugins, and must therefore be initialized with jQuery: select the specified element and call

the tooltip() method.

You must fist install tooltip in the javascript <script>

<script>

$(document).ready(function(){

 $('[data-toggle="tooltip"]').tooltip();

});

</script>

You can specify here the tooltip for a specific field. In this example, it will work for every field.

You can use a clickable link for the tooltip, if it’s interesting to go to a specific page.

Hover over me

Or use it under an image as a way to help the user understand what’s inside the form.

<img width="25" height="25" data-toggle="tooltip" data-placement="bottom" title="Some information about the

client."

 src="<?php echo base_url('assets/images/question.png'); ?>" />

Installation of a LOG
First you need to create a log table. Here is the example:

CREATE TABLE IF NOT EXISTS `log` (

 `id` int(9) NOT NULL AUTO_INCREMENT,

 `user_id` int(11) NOT NULL,

 `timestamp` datetime NOT NULL,

 `module` varchar(100) NOT NULL,

71

 `action` varchar(100) NOT NULL,

 `subject_id` int(11) NOT NULL,

 `attributes` longtext NOT NULL,

 PRIMARY KEY (`id`)

The table log will be filled inside the system, where it is needed to keep a trace.

It will be mainly used in the controller of the table we want to keep the log.

First indicate the table in the construction of the controller. It will be used to create an entry in the log.

For CREATE, you will insert in the log after the succesful insert in the table client. In the attributes, copy the whole

set of data that were used to insert in the table.

For UPDATE, you keep the old-data and the new-data so that you can eventually retrace the information.

For DELETE, keep also the old data set.

72

The LOG can be installed in any tables you wish to keep a log.

