

1

Working with MVC
This example will introduce you to the CodeIgniter framework and the basic principles of MVC architecture. It will

show you how a basic CodeIgniter module is constructed in step-by-step fashion. We will take a very simple example:

The management of the table Nationality. (View – Add – Update and Delete)

Here is the structure of the table:

List of Nationality
The view is the form that will be seen by the user. In the case of the management of nationality, all the process is

inside /application/views/nationality/index.php. The list, creation, update and delete will use the facilities of

datatables.net, javascript and ajax.

All the process will work using the MVC codeigniter principle. The controller /application/controllers/Nationality.php

in charge of the control and the model /application/models/model_nationality.php where all the queries to the

database will be done. Finally, the view under /application/views/nationality/index.php.

To understand the whole process, open the controller Nationality.php, the model_nationality and the view

nationality/index.php in your editor.

2

1. First we evaluate if the last submit of the form had generate an error

message or a confirmation of the success of the operation. The

message will be presented to the user.

2. Security: We verify if the user can create a new nationality. If yes, the button will be presented. The rest of

the access (edit and delete) will be managed inside the controller where the line for each nationality will be

composed with the data from the database.

3. The list is managed by javascript and Ajax. You will find the javascript part at the end of the form.

manageTable is created here invoking the controller

in /application/controllers/nationality.php where the

function fetchNationalityData will organise the list

and call the model Model_nationality to reach the

database.

This is where you can also modify the default order of

the table.

1

2

3

3

4. Controller Nationality.php: This is where the function getNationalityData is called. You can see how the

security is build giving permission or not to update or delete the entry in the table. You will find the function

getNationalityData in /application/models/Model_nationality.php. The datas are treated by the controller

and the result is back to the view index.php in json format.

5. Model_nationality.php: Here is the query to the

database. If the ID is sent to the function, only the entry

will be returned. But in the case of the list, all the entries

in the table Nationality will be returned.

4

5

4

Add nationality

6. For adding a nationality, we will use the createForm of Ajax/Javascript and submit the form calling the

function create in the controller nationality.php. Here is the view for adding a nationality.

CreateForm javascript.

6

5

7. Function create of controller Nationality.php: This is where the validation will be done, in this case the

name is required. If it’s not filled, the validation will be false and an error message will be returned to the

javascript form. If it’s valid, the controller will call the function create in the model_nationality

7

6

Update nationality
8. The process will be pratically the same for the edit (update) of the nationality. Javascript editModal will

manage the update.

9. The submit at the end will call the function update of the controller Nationality.php

10. The form should be filled with the information from the database and the function

fetchNationalityDataById will be called from the controller nationality.php, javascript modal passing the id

from the list to the function getNationalityData in the model_nationality

/application/controllers/

nationality.php

/application/models/

model_nationality.php

9

/application/views/national

ity/ Index.php – editFunc

9

8

10

7

Delete nationality
11. Same process, delete is in the view index.php, calling the javascript removeModal

12. On submit, in this case authorization for the delete, the function remove from the controller

Nationality.php will be called.

13. The remove function of the controller nationality.php will verify the

integrity of the database. The nationality can be already used in the table

license and if an entry exists, the delete will not be possible. The function

is checkIntegrity in the model_nationality

14. If the information is not in license table, then the delete can be done,

calling the function remove in the model_nationality.

11

12

/application/views/national

ity/ Index.php –

removeFunc

13

14

